The Effect of Acute Intermittent Hypercapnia and Exercise on Ventilatory Chemosensitivity and Cardiovascular Function
Loading...
Date
2025-05-27
Authors
Advisor
Au, Jason
Journal Title
Journal ISSN
Volume Title
Publisher
University of Waterloo
Abstract
Ventilatory long-term facilitation (vLTF) is a form of respiratory plasticity triggered by intermittent hypoxia (IH) in the presence of CO2 (1,2,4,34). The manifestation of vLTF following intermittent hypercapnia (IHc) without concurrent hypoxia – particularly in combination with exercise- remains unclear. This study evaluated the physiological effects of IHc and moderate-intensity exercise on cardiovascular function and ventilatory control in the resting and exercising states. Twenty healthy participants (10F) completed a three-visit protocol, including two experimental exposures to either IHc (PETCO2 +5mmHg for 40s, intersped with 20s normocapnic normoxia) or continuous room air (control), each followed by an exercising and resting observational period (~45 minutes in total). At rest, the cardiovascular response to IHc was not found to be different from control. During exercise, heart rate (HR) increased following IHc and mean arterial pressure (MAP) significantly decreased (HR: +12bpm, p < 0.001; MAP: -8mmHg, p = 0.006), while both appeared stable in the time-matched control. Exercising peripheral hypercapnic chemosensitivity (PHC) appeared constant over time with IHc (+14 ± 25%), contradicting the significant decrease observed with control (-8 ± 20%, p = 0.017). While ventilation (V̇E) increased across both states following IHc relative to control, only resting V̇E was disproportionate to metabolic demand, as reflected by a lower %ΔV̇E/%ΔV̇CO2 ratio relative to control. These findings suggest the presence of exercise with IHc may have a modulatory role in the development or expression of cardiorespiratory plasticity, as well as implicating sensory long-term facilitation (LTF) as a contributor to vLTF. Finally, a progressive amplification in V̇E over the course of IHc, independent of CO2 stimulus intensity, is consistent with early-stage chemosensory gain. Collectively, these findings demonstrate that IHc without hypoxia can elicit key indicators of vLTF.
Description
Keywords
intermittent hypercapnia, cardiorespiratory physiology, cardiopulmonary plasticity, long term facillitation